
J .  Fluid Mech. (1994), vol. 214,pp. 115-138 
Copyright 0 1994 Cambridge University Press 

115 

Finite-size effects in forced two-dimensional 
turbulence 

By LESLIE M. SMITH? AND VICTOR YAKHOT 
Program in Applied and Computational Mathematics, Princeton University, Princeton, 

NJ 08544, USA 

(Received 27 August 1993 and in revised form 28 February 1994) 

A new mechanism for the creation of structures in two-dimensional turbulence is 
investigated. The forced Navier-Stokes equations are solved numerically in a periodic 
square in the limit of zero viscosity. The force is a white-in-time random noise acting 
in a narrow band of high wavenumbers. The inverse-cascade process and the presence 
of the boundary lead ultimately to a pile-up of energy in the lowest wavenumber (Bose 
condensation). In the asymptotic limit where the enstrophy cascade range is negligible, 
Bose condensation is solely responsible for the generation of coherent vortices and 
intermittency in the system. We present the evolution of the velocity and vorticity fields 
through the later stages of the condensate state, and explore the possible implications 
for atmospheric turbulence constrained by the periodic domain about the earth. 

1. Introduction 
One of the major challenges of the turbulence problem is to understand the origin 

and significance of long-living, coherent structures that usually exist within a 
background of random fluctuations. The presence of coherent structures causes the 
normalized moments of velocity differences to be displacement-dependent rather than 
constant as for a purely Gaussian field. There has been an effort to parameterize the 
displacement dependence of the normalized moments, but little is known about the 
mechanisms governing the formation and behaviour of the structures responsible for 
this effect. In particular, it is important to separate the role of external parameters from 
the internal dynamics of the nonlinear term. Among the external parameters that may 
characterize a turbulent flow are the power of the energy source E and the lengthscales 
L and lo corresponding respectively to the size of the system and the energy-input scale. 

In a step towards understanding the roles of E ,  L and 1, for structure generation in 
two-dimensional turbulence, we numerically studied Bose condensation in isotropic 
two-dimensional turbulence driven by a white-in-time random force localized about 
the small scale 1, (Smith & Yakhot 1993). Bose condensation in two-dimensional 
turbulence was predicted by Kraichnan (1 967) and confirmed numerically by Hossain, 
Matthaeus & Montgomery (1983), and refers to energy accumulation in the lowest 
wavenumber defining the boundary of the system. In our recent numerical simulations, 
we studied the inverse cascade of energy in two-dimensional turbulence under 
conditions designed to simulate very high Reynolds number and negligible influence of 
the enstrophy cascade range. We observed that during the cascade of energy to large 
scales but before formation of the condensate at the largest scale, the flow is 
structureless and the normalized even-order moments of velocity differences are 
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Gaussian. The appearance of isolated vortices, reflected by the displacement 
dependence of the normalized moments, occurs only after energy accumulates in the 
largest scale because of the finite extent of the domain. Thus, in this case, intermittency 
is a finite-size effect. Here we wish to further explore the consequences of finite 
boundaries and the accompanying phenomenon of Bose condensation in two- 
dimensional turbulence. To fully isolate the dynamics of the large scales, we continue 
to restrict the parameter values of our numerical simulations such that the forward 
cascade of enstrophy to small scales is unimportant. 

The creation of coherent structures is important in atmospheric science and has 
attracted the attention of various investigators (Overman & Zabusky 1982; Flierl, 
Stern & Whitehead 1983; Benzi, Paternello & Santangelo 1988; Melander, Zabusky & 
McWilliams 1987, 1988; McWilliams 1989). It has been shown that strong vortices are 
formed as a result of the merger of smaller and weaker ones originating from the 
nonlinear dynamics at the small scales. In this paper, we consider a new mechanism of 
vortex generation resulting from the creation of box-size motions. Owing to the inverse 
energy cascade in two-dimensional turbulence, the formation of these large-scale 
eddies is inevitable, and thus the mechanism considered in this paper might be of 
general importance. 

In $2, we give the basic equations to be solved and show how simple arguments 
based on dimensional analysis and naive power counting lead to the prediction for 
energy spectrum E(k) cc k-5/3 in a quasi-steady state for wavenumbers smaller than the 
forcing wavenumber and larger than the inverse-integral scale. The numerical 
simulations presented in the following sections give support to this simple picture of 
two-dimensional turbulence in the inverse-cascade range for the case in which there is 
negligible enstrophy flux in this range (k  < k, = 2x/10). In 53,  we review the results of 
the forced simulation in 1 d k given by Smith & Yakhot (1993) for comparison with 
new simulations having altered boundary conditions. Section 4 describes the formation 
of a lattice of vortices when the flow is restricted to wavenumbers k in the range k ,  d k,  
where the value of the truncation wavenumber is taken to be k ,  = 11. Section 5 
presents the flow damped by an Ekman friction at low wavenumbers and compares the 
energy spectrum to observed atmospheric spectra (Lilly & Peterson 1983 ; Nastrom, 
Gage & Jasperson 1984). Section 6 describes the mechanism for vortex generation due 
to finite-size effects, which is different from both vortex generation due to the direct 
cascade of enstrophy and vortex merger in decaying turbulence. In $7 we discuss the 
implications of this work and future research directions. 

2. The equations 

viscosity and at large scales by linear friction, 
We consider forced two-dimensional incompressible flow damped at small scales by 

where $ is the streamfunction, 0 = -Vz$ is the vorticity,fis the force, v is the viscosity 
and a is the damping frequency. The velocity 0 is given in terms of the streamfunction 
by u = 3$/3y and = -a$/ax. Equation (1) reduces to the Navier-Stokes equations 
for p = 1 and 01 = 0. For appropriate choices of the viscosity v, the domain in which 
the viscous term is significant can be restricted to increasingly higher wavenumbers as 
p increases. Thus for fixed resolution, the effective Reynolds number can be made 
higher with p 2 2. In our simulations we use a hyperviscosity withp = 8, which allows 
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for the existence of a sizeable inertial range where the action of viscosity is negligible. 
The forcefis taken to be Gaussian and white-noise in time, defined by its correlation 
function 

(2) 

As we are interested in the inverse cascade of energy from high to low wavenumbers, 
we take D(k) to be localized about the high wavenumber k,. For example, a convenient 
choice for theoretical analysis is 

(fi(k,  t)fj(k’, t’)) cc D(k) S(k + k’) S(t - t’). 

where d is the dimension of space and E is the kinetic energy production rate which in 
a statistically steady state is balanced by the dissipation. 

2.1. Energy continuity 
The continuity equation following from (lb(3) is 

aE(k) + T(k) = kD(k) - 2vkQE(k) - 2aE(k), (4 4 at 

where E(k) is the energy spectrum. The energy transfer function T(k) is the net rate of 
transfer into wavenumber k from interactions with wavenumbersp and q, and is given 
by 

where the expression for T(k,p, q) can be found in the standard literature (Kraichnan 
1967) and T(k,p,  q )  = T(k, q,p).  Integrating (4) leads to 

( 5  4 W k )  
Ikm at ’ 

m 

- J(k) = zD(z) dz - 2v jr Z ~ ~ E ( Z )  dz - 2a Ik E(z) dz - - 

where J(k) = 1: T(z) dz = - Jkm T(z) dz 

is the flux of energy through wavenumber k and 

K(k)  = E(z) dz. 
Jk* 

To reduce the number of external parameters we set v = a = 0 in relation (5a). In 
this case a statistically steady state is impossible since J(0) = 0 and thus the total energy 
K = K(0) = et. However, consider the situation where the energy spectrum at k > k,  
decreases rapidly with k .  In this case K(k) for k > k, is small and the energy flux 
towards small scales can be neglected: J(k) !z 0 at k > k,. Then a statistically steady 
state is still possible in the sub-domain k,(t) k < k,, leading to J(k) = --E for 
ki( t )  < k < k, and J(k) = 0 for k < ki. This is a situation considered in great detail in 
this paper. With e, k,  and ki(t) as the relevant parameters, the most general form of self- 
similar solution is 
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where the dimensionless scaling function $(z) + 1 when z 9 1 and $(z) + 0 when z < 1. 
Integrating (6) over 0 < k < co leads to 

(7 4 K = et = C, e2l3k7; kiY-”’”(t), 

Solving for ki(t) gives 

which is similar to a relation derived by Kraichnan (1967). 
Although a steady state cannot exist for 0 < k < 00, (5) and (6) allow a state where 

only the modes k % ki(t) are statistically steady. In this quasi-steady state, the only 
possible exponent is x = 5 and the spectrum is given by 

E(k) = CK~2’3k-5‘3 - , ki(t) < k < k,. (:x7 (9) 

Thus if a quasi-steady state exists for k 9 ki(t) ,  then there is no influence of the infrared 
cutoff ki(t) on these modes, and one may conclude that infrared divergences appearing 
in renormalized perturbation theories must sum to zero. In this formulation of the 
problem, the complexity of two-dimensional turbulence is reduced to the analysis of 
the ultraviolet divergences in the vicinity of k = k,. In a truly statistically steady state 
with the inverse energy cascade stabilized at the large scales by external fields, one 
cannot so easily rule out the possibility of infrared divergences and corresponding 
corrections to the Kolmogorov spectrum. 

As will be shown in $3, our simulations with a = 0 and v+O support the existence 
of the quasi-steady state and the prediction E(k) a k-5/3 for the modes in the range 
ki(t) < k < k,. Furthermore, we will show that the transfer of energy into k is due to 
interactions with wavenumbers p and q where k < p ,  q < 4k. This local nature of the 
energy transfer occurs because there is a cancellation between the flux from non-local 
interactions with p , q  > 4k and a forward flux of energy which exists in the finite 
system. This cancellation eliminates the infrared divergences from the problem. We 
would like to emphasize that these results cannot be generalized to the steady-state 
situation with low-wavenumber dissipation in which there is a non-negligible flux of 
enstrophy through wavenumbers smaller than the forcing wavenumber. 

Non-zero values of a and v allow a statistically steady state in the full domain 
0 < k < co . The linear damping aw can be considered as a model of the earth’s Ekman 
boundary layer on the vertically averaged equations of motion (Pedlosky 1979). In the 
equations for the velocity ui,  one expects a balance at large scales and long times 
between aui and the nonlinear term vi &,/axj. Assuming that Av E ui(x + ri) - vi(x) 
scales as Av K rq, this balance leads to q = 1 and the energy spectrum 

E(k) = O(k-2q-1) = O(k-3), k = O(l/L). (10) 

The balance leading to (10) between Ekman friction and the nonlinear term does not 
correspond to a state of constant flux. 

In all of the simulations discussed herein, we solve (1) with p = 8 in a periodic square 
using a pseudo-spectral parallel code (Jackson, She & Orszag 1991) at resolutions of 
5122 or 20482 Fourier modes. The force is taken to be (2) with D(k) = A 2 k P / A t  in 
kk < k ,< k;, where kb and k: are the low- and high-wavenumber cutoffs of the force, 
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respectively, At is the time step and A is a fixed amplitude. We consider the case a = 0 
in @ 3 and 4 and the case a + 0 in Q 5.  

3. The inverse-cascade of energy in a bounded domain 
In $53 and 4, we would like to emphasize the detailed dynamics of both the velocity 

and vorticity fields before and after condensation owing to finite-size effects. Section 3 
deals with the simplest case of a finite box with u(k) non-zero for 1 < k.  Section 4 
considers a more complicated situation in which energy is prevented from populating 
modes u(k) with k < 10. Although some of the velocity statistics of the former case 
were given previously (Smith & Yakhot 1993), we review them here for continuity. 

3.1. The energy spectrum 
To study the dynamics of the inverse-cascade range during the time when the inverse- 
integral scale ki(t) is smaller than the truncation wavenumber k ,  = 1, we conducted a 
simulation with resolution of 2048' Fourier modes. This very high resolution allows for 
determination of scaling laws with more accuracy than has been previously achieved. 
Other investigators (e.g. Frisch & Sulem 1984; Maltrud & Vallis 1991) have simulated 
the inverse energy cascade range and concluded that the exponent of the energy 
spectrum was close to the Kolmogorov value x = $, but no error bar was calculated. 
In our 2048' simulation, we find two decades where the scaling exponent is x z g, with 
error bar f0.05 (figures 1 and 2). Also in contrast to earlier works, the statistics of 
higher-order moments of velocity are addressed. 

Figure 1 shows the time evolution of the energy spectrum, starting from initial 
condition u(k) = 0 for all k .  The low and high wavenumbers of the force were kk = 500 
and kt = 525, the force amplitude was A = 0.156 and the value of the hyperviscosity 
was v = 6.1 x In the early time development, before the energy in modes k < kk 
reaches approximately the energy level of the forced modes, the spectrum has the shape 
E(k) = a(t)ko for k < kk, where a(t) increases as t increases. For these early times, 
the nonlinear term is weak in comparison with the force. At intermediate times, the 
Kolmogorov spectrum E(k) K kP5I3 is established in the interval ki(t) < k < kb, and the 
inverse-integral scale ki(t)  decreases in time according to (8). Figure 2 shows the 
compensated spectrum k5I3E(k) at the last time of figure 1, representative of these 
intermediate times. The energy flux J(k) is a negative constant in the range 
ki(t) < k < kk where the flow is statistically steady, and the enstrophy flux is negligible 
for k < kk. 

For later times when ki(t) --f 1, the time development of the large scales became 
prohibitively slow in the 2048' simulation, and therefore it was necessary to repeat 
the experiment with the lower resolution of 5122 Fourier modes. The 512' simulation 
was forced in the interval kk = 100 < k < kt = 105 and the superviscosity was 
v = 4.0 x Figure 3 displays the compensated spectra k5l3E(k) for two times t ,  ( x ) 
and t ,  (0) after ki(t) = 1, and clearly indicates the formation of the Bose condensate. 
The energy spectrum is given by 

in the range 1 d k < kk with x = gk0.05 and C, z 7.0. 
E(k, t )  z b(t) 6(k - 1) + C, 2/3k-z  (1 1) 

3.2. The normalized even-order moments of velocity diferences 
A striking feature of the pre-condensate flow is demonstrated in the insert of figure 2, 
showing for the 2048' run the second-order moment S,  = ((Au)') and the normalized 
even-order moments F,, = ( ( A U ) ' ~ ) / / ( ( A U ) ' ) > " ,  n = 2 -4. The value of the displacement 
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FIGURE 1. Time evolution (increasing upward) of the energy spectrum for the 204V run. 



Finite-size effects in two-dimensional turbulence 121 

6 ~ 1 0 - ~  

4x 10 -7 

ks13 E(k)  

2~ 10 -7 

0 

I " "  

\ 0 1 2 3  0 1 2 3  

1 2 

log k 

FIGURE 3. Compensated spectra x , at an early time t ,  and 0, at a later time 1, after 
condensation in the 512, run. Insert: S, and F,,, n = 2-4 at t , .  

r corresponding to the input of energy is r = 0.01. One sees that the normalized even- 
order moments have a near-Gaussian distribution. Thus there is no intermittency in the 
high-Reynolds number flow before formation of the condensate. 

The existence of the Kolmogorov spectrum E(k) cc k-'I3 indicates strong non- 
linearity, but nevertheless the even-order moments of velocity differences do not 
deviate from the Gaussian values. We do not have a theoretical explanation of this fact, 
though some dynamical considerations are as follows. Let us assume that coherence is 
established as a result of interactions between the small-scale eddies of size r and 
velocity fluctuations of the integral scale O(k;l(t)). The characteristic time of the 
process is of the order of the eddy-turnover time ri cc k;2/3-Y of the largest scales. 
However, according to (S), this is precisely the timescale of significant variation of k,(t). 
Even larger eddies, created as a result of the inverse cascade, tend to reduce the 
efficiency of coherence generation. 

The insert of figure 3 shows S,  and 4%, n = 2-4 for time t ,  of the 512' run, where 
the energy-input scale is r = 0.06. One sees that the values of the normalized even-order 
moments remain the Gaussian values for r > 1. However, for small values of the 
displacement r < 0.6, the moments strongly deviate from the Gaussian values, 
indicating intermittency at small scales. Figure 4 shows S,  and 4, for the 512' run at 
the same two times t ,  and t ,  of figure 3 ,  after formation of the condensate. Here the 
range of r has been reduced to emphasize the region of intermittency. Departure from 
the Gaussian values increases in time from t, to t ,  as the energy in wavenumber k = 1 
increases. One sees that, in this system, small-scale intermittency is triggered by large- 
scale phenomena. Only after organized motions are established at the system size as a 
result of condensation, can small-scale structures with characteristic scale O(k;l) be 



122 L. M .  Smith and V. Yakhot 

0.2 0.4 0.6 

20 
0. '** me... 

0.2 0.4 0.6 

0 0.2 0.4 0.6 

0 0.2 0.4 0.6 

vO 0.2 0.4 0.6 

0 0.2 0.4 0.6 

0 0.2 0.4 0.6 

. I  I 1 1 I I 1 I  

8x104 ' *. ' 

" 0  0.2 0.4 0.6 

FIGURE 4. S,  and F,,, n = 2 - 4  for the 512, run at the two times of figure 3 (a) t , ;  (b) t , .  
The range of r has been reduced to emphasize the region of intermittency. 
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FIGURE 5. J(k) (solid curve) and J(k, k,, k j )  (circles) for the 2048, run at the last time (solid curve) 
in figure 1 and k ,  = 50. (a)  k j  = 2k, = 100; (b) kf = 4k, = 200; (c)  k j  = 525; ( d )  k j  = 925. 
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formed. The physical mechanism leading to the formation of these small-scale 
structures will be discussed in 96. 

3.3. The energyjux J(k) 
To determine which triads of wavenumbers contribute to the flux of energy J(k,) at 
wavenumber k ,  in the inverse-cascade range, we divided J(kl) following Kraichnan 
(1 967) 

where (12) is an exact representation of J(k,). The first integral is the total rate of 
energy loss to k < k,  from triad interactions with p ,  q > k ,  and the second integral is 
the total rate of energy input into the range k' > k ,  owing to triad interactions with 
p , q  < k,. We can classify the flux at k, as predominantly local or non-local by 
introducing the filter wavenumber k, such that the filtered flux J(k,, kf) is given by 

The flux is local if a large percentage of the total is represented when kf is nk, for n 
small, and conversely the flux is non-local if only a small percentage of the total is 
captured when kf is nk,. The notions of small and large will be made more precise 
below. As a visual aid, we plot the total flux J(k) for all k together with 

4 4 
A r \ r  A 

where 0 < k < k ,  in 4 and k ,  < k < kf in 4. 
Figure 5 shows the total J(k) (solid line) together with J(k,k,,k,) (circles) for 

the 20482 run at the last time of figure 1 when the k-513 spectrum extends over 
the range ki(t) z 10 < k < kt = 100. We took k ,  = 50 as a representative inertial- 
range wavenumber, and chose the filters k,=  100, 200, 525 and 925. In each 
plot, the negative contribution to J(k,k,,k,) is J ,  and the positive contribution 
is 4. In figure 5(a) for k, = 2k1 = 100, J,(k,,k,,2k,)+4(k1,k,,2k,) z - 1.8 x 
as compared to the total flux J(k,) = -5.75 x For kf = 4k, = 200 (figure 5b), 
J,(kl,  k , ,  4k,) x - 6.59 x which is slightly more negative than the total value 
of J(k,), but J,(k, ,  k, ,  4k,) +J,(k,, k, ,  4k,) x - 3.2 x amounting to only 
56 % of the total J(k,). For k, = 525 (figure 5 c), J,(k,, k,, k,) "N - 7.65 x 
and J,(k,, k,, k,) + J,(k,, k,, k,) z -4.2 x Finally, for k, = 925 (figure 5d) ,  
J,(k,,k,,k,) x -9.2 x 10-13andJ,(k, ,k , ,kf)+J,(k, ,k , ,kf)  x -5.75 x =J(k,).One 
sees that there is a cancellation between J ,  and the portion of J ,  with p , q  > 4k1 
such that the total flux is given approximately by 4 with p ,  q < 4k,. Thus the transfer 
of energy from high to low wavenumbers occurs locally, where by locally we mean 
through triad interactions in which the ratio of the largest leg to the smallest leg is less 
than about n = 4, while the contribution from non-local interactions is cancelled by the 
transfer of energy from low to high wavenumbers. 

The result that J(k,)  can be approximated by J,(k, ,  k, ,  4k,) was verified for all inertial 
range wavenumbers in both the 20482 and the 512' simulations. The result also holds 
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FIGURE 6. Vorticity field for the 5122 run at time t ,  of figure 3 

after formation of the condensate in the 5122 run. The fact that the magnitude of J1 
continues to grow as kf approaches the highest wavenumber means that ultraviolet and 
infrared divergences are present in the finite system, but we have seen that they are 
cancelled by J ,  > 0. The integral J ,  is a forward flux of energy which exists because the 
forward flux of enstrophy is small but non-zero in the finite-box inverse-cascade range. 

3.4. Physical space 
In physical space, the observed distribution of vorticity is structureless before the 
formation of the condensate. In the condensate state, as energy piles up in wavenumber 
k = 1, the vorticity localizes in space until it is eventually concentrated in two vortices 
of opposite sign. The vorticity distribution inside of each vortex is given by 
w z w,,(t) exp (- ar) with a z 2n/50, which is twice the characteristic scale 2n/k, of the 
force in the 5122 run. The amplitude wo(t) grows in time, while the root-mean-square 
value or,, stays essentially constant. The maximum of vorticity increased by a factor 
of roughly five from the time of the condensate formation to the final time of the 5122 
simulation and reached a value wmaZ z 25wrmS. Figure 6 shows the three-dimensional 
vorticity field for the latest time. 

The time development of the coherent structures is shown in figure 7. Before the 
formation of the condensate, the vorticity field is structureless (figure 7 b )  and the 
velocity statistics are essentially Gaussian. As energy starts to accumulate in k = 1 ,  
leading to formation of large-scale motions, the vorticity picture demonstrates the 
creation of somewhat larger blobs of positive and negative vorticity (figure 7 d , f ) .  At 
this stage the deviations from Gaussian statistics of the velocity differences at some 
range of small scales are detected. As the Bose condensate develops and the large-scale 
motions become more and more energetic, the blobs disappear in favour of two small- 
scale vortices located at the centres of two large eddies in the velocity field (figure 
7 h, j ,  1). This process is accompanied by enormous but strongly localized deviations 
from the Gaussian statistics indicating formation of coherent structures (figure 4). The 
organized motion at the large scales is due to the finite extent of the box and is not a 
result of nonlinear dynamics. What is remarkable, however, is that it triggers the 
generation of small-scale coherent motions corresponding to strong nonlinearity. 

Although the vortices move randomly in space, the distance L, between their centres 
is approximately constant and is equal to L, z n: (half of the box size). Thus Bose 
condensation at k = 1 leads to the generation of a vortical ‘dipole’ characterized by the 
two lengthscales L, and a-l. To change the separation distance L, of the dipole, and 
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FIGURE 7(u-f). For caption see p. 127. 
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(h )  

FIGURE 7(&). For caption see facing page. 
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to observe possible interactions between dipoles, we altered the truncation wavenumber 
k ,  from k ,  = 1 to k ,  = 11. Raising the truncation wavenumber also lowers the 
characteristic time of evolution of the condensate and thus allows one to investigate 
later stages of the process. The results of the simulation with k ,  = 11 are presented 
in 94. 

4. Crystallization 
Here we consider the case where energy is dynamically prevented from populating 

the largest existing scales of the system. An example of this situation is found in 
atmospheric turbulence, where the rotation of the earth leads to wave motions (the p- 
effect) that inhibit the energy cascade to scales larger than O(10000) kilometres (Rhines 
1975; Pedlosky 1979; Maltrud & Vallis 1991). To mimic this kind of blocking effect, 
we eliminated the modes 1 < k < 10 from the box by setting the amplitudes u(k) of 
these modes to u(k) = 0 at each timestep. We refer to the wavenumber of the smallest 
non-zero mode as the truncation wavenumber k,, and in this case k ,  = 11. Starting 
again from initial condition u(k) = 0 for 0 6 k < 512, we followed the time 
development of the energy spectrum and velocity statistics, where the other parameters 
were the same as in the 5122 run with k ,  = 1, namely kf, = 100, k; = 105, A = 0.01 and 

The pre-condensate development of the energy spectrum is exactly as described in 
92. At first, when the nonlinearity is small compared to the forcing, the energy 
spectrum scales as E(k) = u(t)ko for k < kk, where a(t)  increases as t increases. When 
the energy level of wavenumbers k < kf, reaches approximately the energy level of the 
forced modes in kb < k < k;, the spectrum scales as E(k) cc k-5/3 for k,(t)  < k < kk, 
where k,(t) decreases according to (8). During the time when ki( t )  > k ,  = 11, the 
normalized even-order moments of velocity differences have near-Gaussian values and 
the vorticity field is structureless. 

When the inverse integral scale k,(t)  reaches k ,  = 11, a condensate develops and 
like-signed vorticity begins to coagulate, eventually forming small-scale vortices. 
Before condensation, the coherence needed for the formation of small-scale structures 
is continuously destroyed by the creation of larger and larger eddies as k,(t) decreases. 
In the case of k ,  = 11, the vorticity field organizes into a lattice structure of k& = 121 
pairs of oppositely signed vortices (see figure 8). The fact that there are 121 pairs is a 
consequence of the imposed periodicity 11, but the regular lattice structure of the pairs 
themselves implies that there are longer-range correlations between the dipoles, thus 
the analogy with crystallization. 

As the energy is increased further, it also begins to pile up at the harmonics of the 
cutoff k ,  = 11, reflecting the long-range correlations and the perfection of the lattice. 
At these later times, the spectrum is approximated by 

= 4 x 10-36. 

E(k) z C b,(t) 6(k - mk,) + C,  ~ " ~ k - " ~ ,  

for k ,  ,< mk, d kb, m = 1,2,3,. . . in the range k ,  ,< k < kk. Figure 9 displays the 

FIGURE 7. Six pairs at six sequential times of the 5122 run: (a), (c) ,  (e), (g), (i) and ( k )  show velocity 
vectors; (b) ,  (d), (f), (h),  ( j )  and ( I )  show the vorticity field. The lowest (highest) value of vorticity 
is white (black). At the time of (a, b) there is negligible energy in modes with k = O(1). Population 
of modes with k = O(1) is occurring in ( c ,  d )  and (ef). The times of (g, h), (iJ) and (k ,  I )  are after 
condensation. 

5-2 
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FIGURE 8. Vorticity field for the 5122 run with k ,  = 11 at a time well after condensation. 

L I 4  

0 0.5 1 1.5 2 2.5 

log k 

FIGURE 9. The energy spectrum for the 5122 run with k,, = 11 at a time during the crystallization 
process. Insert: S, and < n ,  n = 2-4. 

energy spectrum at a time when energy pile-up can be seen at wavenumbers 11,22,33, 
44, 55 and 66. Notice that the energy spectrum remains quasi-steady with scaling 
exponent x z at wavenumbers between the harmonics. The insert of figure 9 shows 
the normalized even-order moments of velocity differences at the same time. The 
moments depart from the Gaussian values at the forcing scale, but this effect is 
overshadowed by the much larger departure from Gaussianity at the k ,  - 1 = 10 scales 



Finite-size efSects in two-dimensional turbulence 129 

27cm/k,, m = 1, k ,  - 1. These are all the scales at which coherence is established owing 
to the elimination of wavenumbers 1 6 k 6 10. At even later times, it is expected that 
the form of the spectrum (15) will break down, leading to an exponent x > g. 

5. Application to the atmospheric spectrum 
In this section we consider the effect of linear damping at the large scales 

corresponding to a: =+ 0. Our results suggest a possible explanation for the observed 
spectrum of kinetic energy in the atmosphere at wavelengths in the range 10-3000 km. 
We will show that the experimental data can be quantitatively explained on the basis 
of the theory of two-dimensional turbulence when the finite size of the system is taken 
into account. 

5 .  I .  The atmospheric spectrum 
In the 1970s, wind velocity measurements were collected in a series of jet airplane trips, 
for example, during flights between Chicago, Los Angeles and Honolulu (Lilly & 
Peterson 1983; Nastrom, Gage & Jasperson 1984). Owing to the high speed of the 
commercial airplanes used in the experiments (z 1000 km h-’), Taylor’s hypothesis is 
a good approximation and can be applied to calculate the corresponding spectrum of 
kinetic energy for scales I in the range f z 1&3000 km. A best fit to simple power-law 
behaviour E,(k,) cc k;” shows that x = f for wavelengths 10-300 km and x = 2.2-3.0 
for wavelengths 1000-3000 km, where El@,) is the one-dimensional spectrum of 
kinetic energy as a function of the wavenumber k ,  = 27c/f. In addition, global data 
gathered at the National Meteorological Center (NMC) has been analysed to obtain 
the spectrum of the largest scales, indicating the scaling exponent x z 3 for 1 in the 
range 1000-3000 km (Chen & Wiin-Nielsen 1978; Boer & Shepherd 1983). 

The two-dimensional Euler equations conserve both energy and enstrophy, which is 
the main reason why the dynamics of two-dimensional and three-dimensional flows are 
so different. It has not been demonstrated theoretically or numerically that a three- 
dimensional system of horizontal and vertical dimensions L and H ,  respectively, 
becomes two-dimensional when H / L  + 0. However, atmospheric motions at horizontal 
scales greater than O( 10) km are usually assumed to be quasi-two-dimensional because 
their vertical variation is typically of much smaller extent. Quasi-two-dimensionality is 
supported by the fact that stable density stratification inhibits vertical motions and 
tends to produce horizontal flow at large scales (I > O(lOO0) km) (Pedlosky 1979). 
Thus the inertial ranges of isotropic two-dimensional turbulence (Kraichnan 1967) 
have played a central role in theoretical and numerical predictions of atmospheric flow. 
A plausible explanation for the spectrum E,(k,) cc k;5’3 in the range 10 < I < 300 km 
is that it reflects a two-dimensional inertial energy cascade from small to large scales. 
According to theory, the spectrum is given by 

E,(k,)  = C,  2’3k15’3, (16) 
where e is the rate of production of kinetic energy. As shown in 83, our simulations give 
(9) for the two-dimensional spectrum with y z 0 and with the value C,  z 7.0, which 
is close to the value C, z 5.8 derived by Kraichnan (1971). Since C, z $CK in two 
dimensions, we use the value C, = 3 to obtain the experimental value e z m2 s-l 
from the airplane data. 

There is substantial experimental evidence that cumulus convection clouds provide 
the source of energy for the larger mesoscales (Kornegay & Vincent 1976; Vincent & 
Schlatter 1979). Vincent & Schlatter (1979) gave an estimate for the rate of kinetic 
energy generation W z 1 W m-’ in the layer corresponding to the pressure variation 
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200 < p < 700 mb. Taking the median density of air p M 0.5 kg m-3 and the depth of 
the layer h M 10000 m gives eee = W/(hp)  z 2 x lop4 m2 sP3. It was also found that a 
substantial portion of the energy generated in the cumulus clouds is transported to the 
synoptic scales. After comparison with the estimate of e obtained from the observed 
energy spectra we conclude that this portion is of the order 5 YO. 

According to the theory of two-dimensional turbulence with a source of enstrophy 
at lengthscales 1 = O(l,), the spectrum E(k) cc k-513 is generated at 1 > I,, while the 
spectrum E(k)  K k-3 is expected at 1 < lo. This contradicts the atmospheric data, which 
shows an approximate - 3 scaling at scales much larger than the scales corresponding 
to cumulus convection. 

Nevertheless, the shape of the energy spectrum in the range 1000 < 1 < 3000 km led 
investigators to suppose that the scaling E,(k,) cc kr3 reflects a two-dimensional inertial 
enstrophy cascade (e.g. Leith 1971 ; Lilly 1972). If this is so, then a source of enstrophy 
must then exist at even larger scales, and has usually been identified with the baroclinic 
instability (Pedlosky 1979). However, the baroclinic instability depends on the 
existence of a vertical shear and thus its description requires a quasi-two-dimensional 
(rather than strictly two-dimensional) model of atmospheric flow. Salmon (1978, 1980) 
studied the baroclinic instability in the context of the quasi-two-dimensional quasi- 
geostrophic equations formulated by Charney (1 97 1). His numerical calculations 
address the data at scales 100&3000 km, but not the statistics of smaller scales. 

The existence of an energy source at large scales seemed to confuse the issue of 
whether the k-5/3 spectrum for 10 < 1 < 300 km is two- or three-dimensional in nature. 
However, closure calculations (Lilly 1989) and direct simulations (Maltrud & Vallis 
1991) of two-dimensional turbulence with forcing at both high and low wavenumbers 
have demonstrated that an inverse cascade (towards smaller wavenumbers) of 
energy can coexist almost independently with a forward cascade (towards larger 
wavenumbers) of enstrophy. Thus a quasi-two-dimensional description remains 
a possibility for the entire range of scales resolved by the airplane measurements. 

The view adopted here is that the spectrum of kinetic energy in the atmosphere for 
scales 10 < l < 3000 km can be quantitatively described by a model based on two- 
dimensional turbulence. If this is so, then there is an additional mechanism leading to 
the k-3 scaling at large scales that has previously been overlooked. As mentioned in $4, 
the earth’s rotation leads to increasingly zonal flow with decreasing wavenumber, 
whereby the nonlinear transfer of energy to lower wavenumbers is inhibited by the 
excitation of waves (the /3-effect). The ,&effect of the earth’s rotation blocks the energy 
cascade to scales larger than O( 10 000) km. Thus, given an energy source at small scales 
k = O(10) km, there may be a pile-up of energy at scales smaller than O(10000) km. 
When this growth is balanced by Ekman friction, a statistically steady state can be 
achieved with two scaling regimes: the spectrum is given by E(k) cc k W 3  for 
O(10) < 1 < 2n/k, km and E(k) cc K 3  for 27c/k, < l << O( 10000) km. As will be shown 
below, an estimate of the Ekman damping frequency shows that this balance predicts 
a crossover wavenumber k,  in agreement with the airplane data.? 

5.2. The numerical simulation 
Here we present the steady-state solution to (1) with p = 8, v = 4.0 x and 
a = 2.0 x lop6 at a resolution of 5122 Fourier modes. The forcefis again given by (2), 
where D(k) = A2kp6/At  in the range kk < k < kt with kl, = 100, kt  = 105 and A = 0.01. 

t It has recently been shown that simulations of ,&plane turbulence lead to an improved model of 
the atmospheric spectrum where the pile-up of energy occurs at a large scale which is smaller than 
the system size and determined by the value of /3. This will be the subject of a future publication. 
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FIGURE 10. (i) ur,,$; (ii) us. the number of iterations: (a) run;; (b) run;. 

To check that the final state does not depend on initial conditions, we started both from 
a zero initial field with E(k) = 0 for all k (run;), and from the long-time results of a 
simulation with CL = 0 and all other parameters as above (run;). As can be seen from 
the evolution of v,,, and o,,, in the two runs (figure lo), the same steady state was 
approached in both cases. Figure 11 (a)  shows the energy spectrum of run; averaged 
over the last 6 x 10' timesteps. Even though this is a relatively short-time average, one 
sees that there are two distinct regimes such that the spectrum is given by 

(17) 

where C, is dimensional, C, z 7.0, H(x) = 0 for x < 0 and H(x)  = 1 for li > 0. Figures 
11 (b, c)  show the averaged spectrum compensated by kp5l3 and k P 5 ,  respectively. The 
crossover wavenumber k, dividing the two scaling laws should be such that the 
timescale of the frictional force a-l and the Kolmogorov timescale ( c T E ' / ~ ~ ~ ~ ~ ) - ~  are 
equal. Kraichnan (1971) estimated that = O(10-l) leading to k, z 0.06 in our 
simulation, indicating that the wavenumber region 1 < k < 5 with spectrum 
E(k) K k P ,  y = 2.5 is an overlap region between the two scaling regimes with spectra 
E(k) K k-3 for k < k ,  and E(k) K k-5/3 for k > k,. Figure 11 (d )  shows the time- 
averaged energy flux J(k)  of the same run. For wavenumbers 5 < k < kb, the flux is the 
constant value J(k)  z - 2 x The constant flux and energy spectrum E(k)  K k7'l3 
for 5 < k < kk indicate that the effect of the Ekman friction is negligible for 
wavenumbers in this range. For wavenumbers smaller than k z 5, the flux varies 
smoothly from 4 5 )  z -2 x 

The steady-state vorticity field has the same dipole structure characteristic of the 
condensate (figure 12). The damping coefficient CI determines the maximum value of the 
energy E(1) and the maximum amplitude on of the vorticity. The amplitude wn in our 

E(k) z c, k P H ( k ,  - k )  + c, €2/3k--5/3H(k - k J ,  

to J(0)  = 0. 
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FIGURE 12. Steady-state vorticity field of run;. 

simulation is approximately 15 times larger than the root-mean-square value wrms. In 
the case of the atmosphere, the p-effect arrests the energy cascade at a scale much 
smaller than the circumference of the earth, and thus we expect the vorticity field to be 
characterized by many coherent vortices similar to the simulation with k ,  = 11 
discussed in 54. A preliminary study shows that the number of coherent vortices 
increases with increasing rotation rate. 
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FIGURE 13. Close-up of figure 1 1  (a) for 1 < k < kk = 100. 

Figure 13 is a close-up of the spectrum at scales larger than the forcing scale to 
emphasize its similarity to the atmospheric spectra measured by aircraft. Lilly & 
Peterson (1983) report x z f for wavelengths of less than about 150 km and y z 2.2 at 
larger scales. Nastrom, Gage & Jasperson (1984) estimate x = $ for wavelengths in the 
range 2.&300 km and y z 3 in the range 1000-3000 km. The frequency 01 is 
approximately a z 1/10 days-’ corresponding to 01 z s-l, and the value of the 
dissipation rate from the data is c = O(lOP5) m2 sp3. These experimental parameters 
and Kraichnan’s (1971) estimates of CT = O(10-l) give for the experimental crossover 
wavenumber k, = 0(10-5) m-l, which is in agreement with the observations. Notice 
that it is impossible for damping at the smallest wavenumbers k < k,  to cause a direct 
transition from the Kolmogorov spectrum E(k) oc k F 3  at k > k,  to a steeper spectrum 
at k < k ,  unless there is a competing mechanism for growth of energy in k < k,, in this 
case the formation of a condensate due to the finite extent of the domain. Since the 
atmosphere above the earth is essentially within a periodic ‘box’, our simulations 
suggest that the steeper spectrum observed for the large scales 1000 < 1 < 3000 km 
might originate from the finite size of the earth and the Ekman boundary layer. 

We have shown that the atmospheric spectrum of kinetic energy in the entire range 
1&3000 km is given with quantitative agreement by the theory of forced two- 
dimensional turbulence when finite-size effects are taken into consideration. A 
statistically steady state is achieved by the balance between Bose condensation and 
Ekman damping. Although two-dimensional turbulence without rotational effects is a 
crude approximation to geostrophic flows, Bose condensation remains a possibility 
owing to the finite size of the atmosphere. In this case, the system is unstable to 
formation of small-scale violent supervortices. Thus, the large and small-scale 
dynamics are strongly coupled. The role of this coupling in the atmosphere is still 
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unclear and deserves a detailed investigation. Ongoing work includes the further 
numerical study of two-dimensional turbulence on a rotating sphere. Future 
calculations should attempt to determine the relative importance of the baroclinic 
instability and Bose condensation in the generation of the k-“ spectrum. The NMC 
global data set shows that there is a forward flux of energy in some range of large scales 
(see e.g. Boer & Shepherd 1983). 

In order to experimentally verify the physical mechanisms described in this section, 
accurate experimental data on the energy flux as a function of wavenumber are 
necessary. It should be emphasized that, at the synoptic scales where the wind speed 
reaches 300 km h-I, Taylor’s hypothesis cannot be used unless high-speed aircraft are 
employed. 

6. The mechanism of structure generation 
To understand the mechanism of the small-scale structure generation described in 

the previous sections, let us recall the vorticity-generation process in the enstrophy 
range with spectrum E(k) E k P  for x > 3. In this case, vorticity is produced at the 
forcing scale in the form of blobs which are sheared by the energetic large-scale 
motions in the fluid. This process leads to thinning of the blobs and, as a consequence, 
vorticity is transferred to small scales where it is eventually dissipated by the viscous 
mechanism (Kraichnan 1974; Kraichnan & Montgomery 1980). In the system 
considered in this work, the shear in the flow characterized by the k-5/3 energy spectrum 
is not strong enough to generate small-scale structures. This period of flow evolution 
is dominated by the inverse energy cascade : creation of large-scale motions as a result 
of the nonlinear interaction between smaller-scale velocity fluctuations. This process 
does not generate large-scale enstrophy. The situation changes with the initiation of 
box-size motions and the steepening of the energy spectrum. Then the large-scale shear 
in the system is no longer small and enstrophy is generated at k = 1. Vorticity blobs 
are formed at the large scales and then destroyed in the strong-shear regions of the flow 
owing to shear-induced thinning. However, vorticity is accumulated at the centres of 
the large-scale motions predominantly characterized by closed streamlines. 

This process is similar to the one considered by Kraichnan (1970) in his numerical 
experiments of turbulent diffusion. In three-dimensional flow, the process was well 
approximated by an effective diffusivity. However, in two dimensions, the effective- 
diffusivity approximation failed. There, the high probability of ‘ trapping trajectories’ 
led to particle accumulation in some localized regions of the flow. In the system 
considered in this work the trapping trajectories of vorticity, convected by the velocity 
field, are much more prominent because of finite-size effects forcing circular fluid 
streamlines. This picture of vortex formation is illustrated in figure 7 presenting the 
time sequence of both velocity and vorticity fields starting from the structureless state. 
Before population of the modes with k = O(1) (figure 7a, b), the velocity field seems 
entirely random and the vorticity field, in turn, does not show any organization. Later, 
when k ,  = 1 one notices some large-scale structure in the velocity field, accompanied 
by creation of rather diffuse and shapeless vorticity blobs situated within closed 
streamlines (figure 7c-f). As the amplitude of the condensate grows and the velocity 
is organized into a powerful flow with characteristic length approximately equal to the 
half-box size (figure 7g-I), the vorticity blobs are thinned and destroyed by the strong 
shear, and can survive only in the vicinity of the centres dominated by the closed 
streamlines (‘ safe havens ’ according to J. McWilliams). 

The later stages of the evolution, described in $4, can be understood in the following 
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way. When time t + co, the enstrophy 52 in the system cannot be considered constant 
since 

where 0, is the contribution to the total enstrophy from the scales k > k,. 52, 
dominates the enstrophy at times t < t,, where t ,  is found from the relation 
b(t,) k! = 52,. We remind the reader that k, is the smallest infrared wavenumber. Thus, 
in a finite system the inverse energy cascade and Bose condensation serve as an effective 
infrared source of vorticity. The strong large-scale shear, present at late stages of 
evolution, produces the thinning effect discussed above and, as a consequence, 
enstrophy is transferred to smaller scales in a manner similar to that in Kraichnan's 
(1974) classic picture of the direct enstrophy cascade. This process competes with the 
inverse-enstrophy cascade owing to the development of the condensate. Since the 
enstrophy flux in a statistically steady state must be constant, zero or otherwise, it may 
well be that a non-equilibrium steady state in this system is impossible. This is 
suggested by the growing-in-time peaks in the energy spectrum shown in figure 9. What 
we have just described is a novel mechanism: the nonlinear term in the equation of 
motion serves as an infrared source of vorticity and, in addition, transfers newly 
created vorticity to the smaller scales. This differs from a typical situation in which 
enstrophy is produced by external forces and fields, and then transferred to the smaller 
scales by the nonlinear interaction. 

Q(t)  2 b(t) k; + a,, (18) 

7. Discussion 
The first basic assumption of a typical analytical theory of turbulence is the existence 

of a statistically steady flow governed by the Navier-Stokes equations. In three 
dimensions, this usually implies a large-scale stirring mechanism and small-scale 
viscous dissipation. In the intermediate range of scales where both production and 
dissipation can be neglected, energy conservation leads to constancy of the energy flux 
in wavevector space, and the goal of the theory is to find solutions corresponding to 
this constant flux. 

In two-dimensional turbulence, the situation is more complicated. Owing to the 
second conservation law, there exist energy and enstrophy fluxes towards large and 
small scales, respectively. Since viscous dissipation is negligible in the limit k + 0, a 
steady state can be maintained only if another dissipation mechanism is assumed at the 
largest scales. This is an additional assumption of the theory since the Navier-Stokes 
equations do not have this dissipation and introduction of external fields is necessary. 
To illustrate how an artificial large-scale dissipation can modify the physics of two- 
dimensional turbulence, let us consider the expression for the enstrophy flux J,(k) for 

(19) 

k < k,, 

J,(k) = 2v J: z2+"E(z) dz, 

where x is the power of the Laplacian in the dissipation term. In the case of the 
Navier-Stokes equations, x = 2 and the integral is asymptotically equal to zero for the 
energy spectrum E(z) a z - ~  with y < 5. However, in the case of an artificial dissipation 
where x is a large negative number, the integral (19) diverges in the small-k limit, and 
the enstrophy flux is finite in the range 1 < k < k,. This is a two-flux state for which 
no theory exists. The non-zero negative enstrophy flux is likely to introduce important 
modifications to the physics of the flow. Indeed, enstrophy is created at small scales in 
the form of statistically independent positive and negative vortices. The only way for 
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FIGURE 14. (a) E(k) and (b) P 2 E ( k )  for the 20482 run with 1' = 3.0 x to allow for a 
significant forward cascade of enstrophy. This is not a quasi-steady state. 

enstrophy to be transferred to the large scales is through the process of same-sign 
vortex merger. This dynamics is very different from the inverse-cascade of energy 
towards the large scales that does not generate large-scale vorticity. 

Demonstration of the statistically quasi-stationary state, characterized by non-trivial 
energy spectrum but having close-to-Gaussian statistics is one of the main results of 
this paper. The parameters of the problem were chosen such that no substantial direct 
enstrophy cascade was present. This choice minimizes the nonlinear interaction 
between the modes in the intervals k > k,  and k < k,.  In this case, the small-scale 
dynamics are dominated by the random force acting in the vicinity of k = k,  and not 
by the nonlinearity as in three-dimensional turbulence. The simplicity of the small-scale 
dynamics is partly responsible for both the close-to-Gaussian statistics of the velocity 
field and the Kolmogorov spectrum E(k) cc kF'/3. This statement has been confirmed 
by numerical simulations in which the magnitude of the hyperviscosity was reduced to 
allow formation of some enstrophy range. For the value Y = 3.0 x the exponent 
of the energy spectrum for ki(t) 4 k < ki changed to 2 6 x < 2.3 and a quasi- 
stationary state was not obtained. Figures 14(a, b) show the energy spectrum E(k) and 
compensated spectrum k2.2E(k), respectively, at a time when the inverse-integral scale 
is kf ( t )  z 10. The change in the exponent was accompanied by the generation of small- 
scale vortices. This fact shows that energy is produced at k = k ,  and that the vortices 
are generated owing to the direct enstrophy cascade at k > k,. These are not the 
vortices due to finite-size effects, and we call them the ultraviolet vortices. The 
ultraviolet vortices are responsible for intermittency at scales r = O(k;l), but the &%(r), 
n = 2 -4 remain the Gaussian values for r > 0.1. When large-magnitude vorticity was 
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FIGURE 15. (a) log E(k) for the unfiltered (solid) and filtered (crosses) fields. (b)  k5’/”E(k) for the 
filtered field. (c) The flux J(k )  for the unfiltered (solid) and filtered (crosses) fields. 

filtered out, the remaining structureless velocity field had the Kolmogorov spectrum. 
Figure 15(a) compares the spectra of the unfiltered (solid curve) and filtered (crosses) 
fields. Figure 15 (b) is the compensated spectrum k5’3E(k) for the filtered field including 
only JwI < 3 ~ , , , ~ .  The threshold 3w,,, was found to be the smallest integer multiple of 
w,,, for which the field filtered above this threshold retained a constant flux in 
ki(t) < k < kk. Although only about 50 YO of the energy in the range k < kb remains in 
the filtered field, figure 15(c) shows that the background carries about 80% of the 
energy flux. In figure 15(c), the unfiltered and filtered fluxes are shown respectively by 
the solid curve and crosses. Thus in this range of parameters energy is mainly 
transferred in the kF”3-Kolmogorov background field. 
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